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Forest Change Detection in Incomplete Satellite
Images with Deep Neural Networks
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Abstract—Land cover change monitoring is an important task
from the perspective of regional resource monitoring, disaster
management, land development and environmental planning.
In this study, we analyze imagery data from remote sensing
satellites to detect forest cover changes over a period of 29
years (1987−2015). Since the original data is severely incomplete
and contaminated with artifacts, we first devise a spatiotemporal
inpainting mechanism to recover the missing surface reflectance
information. The spatial filling process makes use of the available
data of the nearby temporal instances followed by a sparse
encoding based reconstruction. We formulate the change detec-
tion task as a region classification problem. We build a multi-
resolution profile of the target area and generate a candidate set
of bounding box proposals that enclose potential change regions.
In contrast to existing methods that use handcrafted features,
we automatically learn region representations using a deep
neural network in a data-driven fashion. Based on these highly
discriminative representations, we determine forest changes and
predict their onset and offset timings by labeling the candidate
set of proposals. Our approach achieves state-of-the-art average
patch classification rate of 91.6% (an improvement of ∼ 16%)
and mean onset/offset prediction error of 4.9 months (an error
reduction of 5.0 months) compared to a strong baseline. We also
qualitatively analyze the detected changes in the unlabeled image
regions, which demonstrate that the proposed forest change
detection approach is scalable to new regions.

Index Terms—Change detection, Multi-temporal spectral data,
Remote sensing, Deep learning, Image inpainting.

I. INTRODUCTION

Ecosystem management and socioeconomic studies at re-
gional, national and international scale require the detection
and monitoring of land cover changes. In particular, for-
est change detection is crucial for continuous environmen-
tal monitoring to closely investigate pressing environmental
issues such as natural resource depletion, biodiversity loss
and deforestation. Change detection can also provide essential
information to help in disaster management, policy making,
area planning and efficient land management. In Australia
alone, forests occupy 125 million hectares, which corresponds
to 16% of the total continent’s land and nearly 3% of the total
forest area in the world. Forests are regularly disturbed by
significant changes, e.g., during 2006-07 to 2010-11, an area
of approximately 39 million hectares was destroyed by fires
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and 9 thousand hectares were yearly harvested in Australia
[1]. These disturbances need to be frequently monitored and
analyzed to develop competent response procedures for forest
ecosystems.

Current studies using medium spatial resolution satellite
imagery usually perform a synoptic analysis over a tem-
poral scale of one or more years [2–5]. The traditionally
used Landsat imagery based systems work at a longer time
scale due to their low coverage across the globe and low
repeat frequency in contrast to the coarse spatial resolution
satellite imagery sources e.g., Moderate-Resolution Imaging
Spectrometer (MODIS), National Oceanic and Atmospheric
Administration (NOAA), and Advanced Very High Resolution
Radiometer (AVHRR). Moreover, climate and weather condi-
tions (e.g., continuous cloud cover) significantly restrict the
acquisition of quality land cover data.

In this work, we introduce an automatic solution for forest
monitoring at a sub-annual level for applications that require
a more frequent analysis, including grazing land management,
crops safety examinations, and natural hazard analysis. Our
solution is also applicable to regions undergoing a rapid forest
regeneration (thus requiring a more frequent analysis) to avoid
excessive omission error [6]. We utilize the publicly accessible
Landsat data and monitor changes at a much finer timescale of
2 months as opposed to several years. The primary challenge,
however, is the severe missing data problem in the Landsat
imagery due to limited camera aperture, cloud occlusion and
sensor artifacts. To address this issue, we propose a two-stage
strategy for the fine-grain change detection task (see Fig. 1).
In the first stage, we take a data-driven approach to fill in the
missing spatial data and achieve higher temporal resolution
from the available Landsat spectral data sequences (Sec. IV).
Our technique is based on image inpainting using sparse
encoding. The key idea here is to exploit the temporal and
spatial continuity of the underlying events and use statistics of
the observed image patches to fill in small gaps (Sec. IV-A,
IV-B). The resulting high temporal resolution image sequences
enable us to analyze data at a much finer temporal scale.

After obtaining the inpainted time-lapse satellite imagery,
we tackle the change detection problem in the second stage.
We focus on two sub-problems under the scope of change
detection. The first is the detection of multiple classes and
instances of change events in a specified region. The second
is the estimation of the start and end time of the detected
change event. For this purpose, we consider the unconstrained
change discovery in a large geographic area by selecting class-
independent change event candidate regions, and predicting the
likelihood of certain change event types along-with their start
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Fig. 1: An overview of our approach for change detection in
incomplete satellite images.

and end times. Our main contributions are threefold:

• In contrast to the existing approaches that rely strongly
on expert’s domain knowledge to extract features, we
employ a deep learning approach to automatically capture
the most appropriate features from the inpainted image
data at the finer temporal scale (Sec. V). Such deep
neural network based approaches have shown superior
performance in most computer vision tasks such as clas-
sification, detection, and segmentation [7–10], and are
particularly suitable for representing signals and their
spatiotemporal context.

• Unlike the traditional pixel-based local change detection
techniques [11–14], our method incorporates contextual
information in the form of spatial, spectral and temporal
relationships in a novel deep convolutional neural net-
work (CNN) model (Sec. V-C). Thus, our method can
be categorized among the object-based change detection
methods that are more robust than their pixel-based
counterparts [15].

• Conventional object-based change detection methods
heavily rely on image segmentation, which often leads to
over (excessively large regions) and under (incorrectly too
small) partitioning of change areas [4, 16]. To alleviate
this problem, we generate change box proposals and
select a candidate set with the help of multi-resolution
area profiles (Sec.V-A,V-B).

As a case-study, we analyze time-series satellite imagery
of the north-east region of Melbourne, Victoria, Australia
(Sec. III). Our region-of-interest is a rectangular section with
an area of 20,016.1 km2 (7,728.2 mi2) lying between a
latitude and longitude of 36000′00.0”S 146000′00.0”E and
38000′00.0”S 147000′00.0”E. We detect potential change re-
gions in this area and predict their onset and offset timings.
Since annotations are available for only a few selected change
regions, we perform both a quantitative and qualitative analysis
to assess the performance of our approach on both labeled
and unlabeled patches, respectively. Through extensive exper-
iments, we show that our approach outperforms all baseline
techniques by a significant margin. Our method attains a mean-
IOU score of 84.9% and an average recall rate of 77.7% for the
temporal change detection and patch-wise classification tasks.

In terms of the start and end time predictions for detected
change events, our method predicts the onset and offset times
with an average error margin of ∼3 months and ∼6 months,
respectively. This performance is remarkably better than the
current state-of-the-art approaches, which yield error margins
in years scale (Sec. VI-D).

The rest of the paper is organized as follows. We discuss
related literature in the next section (Sec. II). Data description
is provided in Sec. III and data recovery approach is detailed
in Sec. IV. Next, we explain our change detection approach in
Sec. V. The experimental results are reported in Sec. VI and
the paper finally concludes in Sec. VII.

II. RELATED WORK

The prevalent approaches for change detection in remotely
sensed data can be categorized into two major classes; low-
level local approaches and object-based approaches [4]. The
low-level approaches use statistical indices derived from the
pixel values of spectral images [17]. They are limited to
pixel-level analysis, thus they remain agnostic to the valuable
contextual information. A conventional approach to pixel-level
change detection directly compares the contrast of bi-temporal
(pair of) images acquired at selected dates when high-quality
data was available [18]. Similarly, [11] extracts spectral indices
to compare and detect changes in a pair of images. To study
seasonal trends in multiple images, the temporal trajectories of
coarse to moderate spatial-resolution spectral data have also
been analyzed [12]. [19] proposed a pixel-level forest trend
index and studied its performance on the Australian continent
Landsat imagery. Compared to our approach, they perform
analysis at a much coarse temporal scale (only 10 images
during 1989-2006) and work on clean data acquired during
dry seasons.

Other pixel-level change detection techniques use a vege-
tation index [20, 21], change vectors [22], spectral mixture
analysis [23] and local texture [13]. Machine learning based
classifiers such as Multi-layer Perceptron [24], Decision Trees
[25] and Support Vector Machine (SVM) [14] have also been
used for pixel-level change detection. However, these methods
mainly use handcrafted features based on domain expertise.

The object-based approaches consider the contextual infor-
mation by working on the homogeneous pixels, which are
usually grouped together based on their appearance (spectral
information), location and/or temporal properties [15]. One of
the earliest work in object based change detection also uses the
geometrical information of urban structures for object based
analysis [26]. In most cases, standard unsupervised segmenta-
tion and grouping procedures are used to generate such pixel
clusters [27]. Since these approaches work on region or object
level, they are less prone to spectral variability, geo-referencing
effects and errors in detecting land cover changes compared
to pixel-level approaches [4]. Some object based approaches
[13, 28] directly compare objects from different images to
account for changes. In contrast, the approaches from [29]
and [30] compare the extracted objects for change detection
only after they are categorized into one of the desired classes.

One problem with object-based methods is that they heavily
depend on the segmentation methods used for the generation
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Fig. 2: The two study regions (left and right) for change detection are forests in Victoria, Australia (courtesy of Google Maps).

of objects [15, 31]. Not all objects generated in this manner are
of the same size, and therefore over and under segmentation
errors lead to less accurate change detection results [4]. To
avoid such errors, we propose to generate bounding box
candidates at multiple scales to detect interesting changes
of varying sizes. Moreover, existing works use hand-crafted
features or spectral indices derived from the objects for change
monitoring [18, 31]. In contrast, this work automatically learns
useful feature representations and predicts change likelihoods
using a deep neural network.

Spectral remote sensing data suffers from several artifacts
and various approaches have been proposed in the literature for
preprocessing and data recovery [32, 33]. The preprocessing
techniques deals with problems such as image registration
for mosaic generation and the radiometric, atmospheric and
topographic corrections needed to improve raw spectral data
[34, 35]. From the perspective of frequent change analysis,
a more crucial issue is the recovery of data missed due to
sensor errors, seasonal and weather conditions. Data recovery
approaches normally use image inpainting, multi-spectral and
multi-temporal information [36].

Image inpainting approaches (e.g., [37, 38]) give visually
pleasing results, however they fail to recover very large regions
of missing data and the recovered information is not reliable
for change analysis. Multi-spectral approaches (e.g., [39, 40])
use spectral information from other bands or sensors (e.g.,
MODIS in [41]) to estimate missing information in the Landsat
ETM+ (Enhanced Thematic Mapper Plus) images. However,
the spectral bands from other sensors suffer from differences
in spatial resolution and bandwidths. The method in [42],
called Automated Cloud Cover Assessment (ACCA), uses the
reflective and thermal properties of the captured image for

cloud cover estimation. This technique fails for the case of thin
cirrus clouds (present at higher altitudes) because of their weak
thermal signature. Compared to ACCA, Function of Mask
(Fmask) [31] method for cloud and their shadow detection
performs slightly better but still misses very thin cirrus clouds.
Two types of auxiliary images are used by [33] to combine
the high-frequency and the low-frequency information for data
recovery.

Our approach for data recovery lies under the category of
multi-temporal imagery based methods. These methods rely
on both the temporal and spatial contextual information and
work best for the recovery of large missing regions. One
such approach from [32] assumes that land cover changes
are insignificant over a short time-duration and use cloud-
free patches to recover contaminated data. Similarly, other
approaches (e.g., [43–45]) present sophisticated methods to
perform data recovery across temporal domain by either re-
adjusting the patch statistics or directly predicting the inten-
sities. In contrast to these approaches, our method performs
data recovery using reliable temporal information and can
also recover regions contaminated by transparent clouds. Fur-
thermore, the proposed approach is fairly straightforward and
uses multi-resolution profiles which keep the recovered data
consistent and reliable for valid change analysis.

The combination of complementary information obtained
from multiple remote sensors has also been studied in the
literature to remove mutual inconsistensies [46]. This proves
to be useful because different data modalities have varying
measurement resolutions, failure rates and sensitivity to atmo-
spheric conditions (e.g., cloud cover). Shen et. al[47] fused
high frequency and high spatial-resolution data streams to
leverage the benefits of both for surface urban heat island anal-
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Fig. 3: Gantt chart of the fire and harvest incidents in the regions of interest identified during the period 1999-2015. Fire
regions are usually recovered in a shorter period compared to the harvest regions.

ysis. Multi-sensory information was jointly used to produce
better estimates of urban growth maps in densely populated
regions [48]. Fablet and Rousseau [49] suggested an inpainting
approach to benefit from the mutual strengths of microwave
and infrared measurements for sea surface temperature. Apart
from applications in geophysical analysis, interpolation of
missing data using multiple data sources has also been used in
biophysical monitoring e.g., vegetation mapping [50]. Differ-
ent to these approaches, we only consider output from a single
remote sensor to interpolate missing information to enable
more frequent forest cover analysis.

More recently, convolutional neural networks (CNN) have
been used for object detection and segmentation in remotely
sensed multi-spectral images [16]. Penatti et. al [51] found that
deep features that are extracted from a network pretarined on
regular color images, generalize very well to satellite images.
Transfer learning paradigm has also been investigated to learn
better representations from remotely sensed data. Gueguen
and Hamid [52] used a CNN model, fine-tuned on a large
number of satellite images, for damage detection. Multi-scale
convolutional architectures were also learned to obtain pixel-

level segmentation in satellite images [53]. Among other
applications, CNN models have been used for high-resolution
remotely-sensed scene classification [54, 55], road network
segmentation [56] and vehicle detection [57]. In contrast to
these techniques, our approach deals with change detection in
forest cover and provides a mechanism to extract and combine
localized feature representations using a CNN.

III. STUDY AREA

We analyzed a 222.4 × 90.0 km2 rectangular area in the
north-east of Melbourne city in Victoria, Australia (Figure 2).
The remote sensing satellite data is provided by the Australian
Reflectance Grid (ARG) from the Geoscience Australia (GA).
ARG is a medium resolution (0.000250 ∼= 25m) grid of
surface reflectance data based on United States Geological
Survey’s (USGS) Landsat TM/ETM+ imagery. To make the
data comparable, robust physical models of [59, 60] are used to
remove the differences caused due to sensor geometry, surface
geometry, sun and atmospheric characteristics. With each of
the surface reflectance image, a corresponding map of pixel
quality flags is provided. For each grid cell, this map indicates
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Fig. 4: Examples of artifacts in the data. There exist large regions of missing data along with strong clouds and their shadows.
SLC-off artifacts are shown in the two right-most images which appear as slanted wedge-shaped regions of missing data (figure
best seen when enlarged). Artifacts constitute almost 75.9% of the data.

the presence or absence of null values, band saturation, clouds
and cloud shadows. The processed reflectance data is referred
to as the Landsat Nadir Bidirectional Reflectance Distribution
Function (BRDF)-Adjusted (NBAR) images.

The flags included in the pixel quality map are shown
in Table I. Notice that, the two cloud flags are included in
the map based on two different methods. The first cloud
detection method used is the ACCA algorithm of [42, 58].
The second cloud detection method used is the Fmask algo-
rithm proposed by [31]. Fmask utilizes Top of Atmosphere
Reflectance (TOAR) for cloud detection and performs better
than the ACCA algorithm. Therefore, in this work, we use
clouds detected with the Fmask algorithm during the prepro-
cessing phase. It is important to note that very thin clouds are
still missed by both methods and therefore we describe our
approach to remove such clouds in Sec. IV-C.

The study area is divided into two regions of equal di-
mensions. Since the available data of both regions belongs
to different time-ranges, we refer to the region between
coordinates 37000′00.0”S 146000′00.0”E and 38000′00.0”S
147000′00.0”E as Db-37 and the region between co-
ordinates 36000′00.0”S 146000′00.0”E and 37000′00.0”S
147000′00.0”E as Db-36. For Db-37, we have a time lapse
sequence between 1999-2015 (17 years) of surface reflectance
data and the corresponding pixel quality maps. For Db-36, we

TABLE I: The flags included in the pixel quality map available
with the Landsat NBAR images. The remaining bit locations
are not currently used.

Bit Position Flag Purpose

0-4 Respective band 1-5 is saturated
5 Band 6-1 is saturated
6 Band 6-2 is saturated
7 Band 7 is saturated
8 Contiguity (No Null Values)
9 Land or Sea

10 Clouds (ACCA [42, 58])
11 Clouds (Fmask [31])
12 Cloud shadows (ACCA)
13 Cloud shadows (Fmask)
14 Topographic Shadow

have surface reflectance data and pixel quality maps for years
1987-2014 (28 years).

The remote sensing data is labeled with two types of forest
changes, namely harvests and fire incidents. During the period
of 17 years in the region Db-37, a total of 99 incidents were
manually identified by experts, out of which 50 were fire
incidents while the remaining 49 were harvest incidents. These
99 change incidents happened at 68 distinct sites. Similarly,
a total of 49 incidents were recorded in Db-36 during the 28
years period, out of which 14 were fire incidents while 35
were harvest incidents. These change events took place at 29
different sites. The Gantt chart representation for both types
of annotations in Db-37 is shown in Figure 3. Note that the
fire incidents usually last for a much shorter period (and also
recover quickly) compared to the harvest incidents.

IV. DATA RECOVERY

The data under investigation contains several artifacts due
to which land cover is not always visible in the ARG (see
examples in Figure 4). These artifacts include missing sur-
face reflectance data, heavy clouds and saturated channels in
remotely sensed data. Moreover, black stripes (wedge shaped
gaps) appear in the Landsat-7 ETM+ imagery due to the failure
of the scan line corrector (SLC) in 2003. There is no temporal
relationship between the missing data locations, i.e., these
locations do not remain consistent at different instances of
time. To illustrate by an example, approximately 40.7% of
the total reflectance data in the Db-37 is missing while nearly
35.2% of the data is cloudy. For land cover change analysis
and detection, it is necessary to remove these artifacts, which
make a staggering ∼75.9% of the reflectance data in Db-37.
In the current work, we do not aim to remove light cloud
shadows or topographical shadows, which also create visual
artifacts but are not as severe as the artifacts described above.

To fill-in the missing data and the residual cloudy regions,
we design a three-stage image completion process that exploits
the redundancy in the raw image data. The first stage deals
with large gaps by assessing the reliability of data along
the temporal domain (Sec. IV-A). The second stage performs
a spatial refinement to remove noisy data and ensure spa-
tially consistency (Sec. IV-B). The last stage performs further
refinement by removing very thin and transparent clouds
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Fig. 5: Data recovery results on single frames: The top row shows raw spectral data, which suffers from several artifacts
including weather conditions. The bottom row illustrates our recovered images, which are visually more pleasing and more
suitable for further analysis.

(Sec. IV-C). These three stages are elaborated in the following
sections.

A. Gap Filling

In the first stage, we fuse the reliable data along the temporal
dimension to generate one representative image for a period of
approximately two months using the corresponding flags in the
available pixel quality map. Then, we construct a mean image
from the representative images to obtain a yearly background
profile, which we employ consecutively to fill the remaining
missing pixels in the original images. In our experiments, this
temporal strategy yields better performance than pixel-wise
interpolation that only uses spatial information leading into
additional artifacts. Since the original satellite images were
acquired at an average frequency of 12 days, this stage can
fill in a large percentage of missing pixels without affecting
forest change events, which are usually slower processes.

B. Masked Sparse Reconstruction

In the second stage, we further enhance the image frames
using masked sparse reconstruction to enforce the spatial
consistency and remove possible artifacts generated from the
first stage. We elaborate our approach below.

Given a set of input images {I}1×N , we first extract same
size overlapping patches with dimensions s× s and a uniform
step of p. These patches form a set P = {pi}Mi=1, where
normally M is a considerably large number. To make the
dictionary learning step computationally feasible, we randomly
choose a relatively smaller set of patches denoted by P̂ =
{pi}mi=1. Typically, the learned dictionary is composed of r

basis vectors, where r << m1. The objective minimized
during the dictionary learning process is defined as follows:

min
D∈C

1

m

m∑
i=1

min
αi∈Rr

(
1

2
‖ pi −Dαi ‖22

)
+λ ‖ αi ‖1 +γ ‖ αi ‖22

(1)
where, λ and γ are the regularization parameters which enforce
a sparse solution for αi. The set C is the constraint set of
matrices defined as follows:

C = {D ∈ Rq×r s.t., ‖ dj ‖22≤ 1, j ∈ [1, r]}. (2)

The above constraints on the basis vectors (columns of dictio-
nary D) avoid arbitrary large values in the learned dictionary.
Notice that, we form an over-complete dictionary by setting
a small patch size (s), therefore r > s2. The sparse coding
problem posed in Eq. 1 is solved using the online dictionary
learning algorithm of [61].

Once a dictionary has been learned, each image patch pi can
be reconstructed using a sparse combination of basis vectors
in D. However, as discussed in Sec. IV, the spectral data has
severe artifacts and it is quite possible that some of the regions
are still not fully recovered during the first-stage inpainting
procedure. If we perform a normal reconstruction step using all
the pixels in a given patch, it will lead to errors because some
of the patch information may not be valid (appearing usually
as black regions). Therefore, during the sparse reconstruction
step, we only reconstruct the valid regions (original valid data
and the recovered regions in the inpainting step in Sec. IV-A)

1In our experiments, the following parameter settings were used: s =
8, p = 2,m = 5 × 105 and r = 512. The total number of patches (M )
were ∼ 2.0× 109 and ∼ 3.8× 109 for Db-37 and Db-36 respectively.
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Fig. 6: Left: Gap filling output, Right: The masked sparse re-
construction step reduces noise and removes boundary effects
caused by the gap filling.

and do not include the missing pixels in the approximation
process (Eq. 3). This step fills in small regions of missing
data and removes abrupt changes in pixel contrast since the
dictionary D is constructed from only clean patches. The
objective function for this recovery step can be formulated
as follows:

min
αi∈Rr

1

2
‖Mi(xi −Dαi) ‖22 +λ′ ‖ αi ‖0, ∀i ∈ [1,M ],

(3)
where, λ′ is a regularization parameter to enforce sparsity,
Mi ∈ R is a mask defined as a diagonal matrix: Mi =
diag(βi) and βi ∈ {0, 1}s

2×1. The mask Mi encodes the
validity of each pixel. More precisely, the pixels that are not
recovered during the first stage of recovery process are marked
as invalid pixels.

The optimization problem in Eq. 3 is solved using the
orthogonal matching pursuit (OMP) algorithm [62]. A final
complete image is obtained by combining all the small patches
pi and performing an averaging operation over overlapped
regions. Finally, note that the sparse reconstruction step is
performed individually for each channel of the reflectance data
by learning a separate dictionary. This preserves the distinct
information in each spectral band and ensures a consistent
recovery of the missing information. The improvement is
illustrated via an example in Fig. 6.

C. Thin Cloud Removal

The third stage of our data recovery addresses the residual
thin clouds in the recovered images. At this stage, all the
missing data regions are filled-in, however, some partially-
missing regions can still occur due to the thin clouds. Note
that, state-of-the-art cloud detection methods (ACCA and
Fmask) fail to find thin layers of clouds. Besides, the pixel
quality map (Sec. III) does not indicate their location. These
translucent regions cause problems during the later stages of
change detection (e.g., region proposal generation). Therefore,
we devise an efficient approach based on color heuristics to
remove the thin clouds (Figure 7).

In the forest region under consideration, thin clouds appear
in the Band 1 of the surface reflectance data (blue pixels in
Figure 4). More importantly, these thin clouds appear and
disappear abruptly and do not occupy one spatial location

Time-lapse 

Sequence of 

Images

Yearly Profile

Overall

Background 

Profile

Year 1Year 2Year N

Information 

Flow for Cloud 

Removal

Cloud 

Detection 

using 

Generated 

Profile

Cloud 

Detection 

using 

Generated 

Profile

Fig. 7: Our approach to detect and remove thin translucent
clouds which are missed by the current stat-of-the-art tech-
niques.

for a long time period. To detect thin clouds, we build a
multi-resolution profile (MRP) of a spatial region. Note that
the multiple resolutions are considered along the temporal
domain to build MRP.. The MRP has two distinct levels, the
higher level consists of the back-ground profile of an area
generated by averaging all the valid pixels in the entire time-
range i.e., 1999-2015. The lower level comprises of the yearly
profile of an area generated by averaging all the valid pixels
within one year. In order to detect thin shadows, we first
compare the yearly profiles with the background profile and
compute a thresholded-difference image using Band-1. This
band captures the wave-length range (0.45-0.52 µm) where
thin clouds are clearly visible. The detected regions in the
yearly profiles are replaced with the background profile data
to remove thin clouds.

At the next level, we repeat a similar procedure with
the images and the yearly profiles. A thresholded-difference
image is computed by comparing each image with its yearly
profile image. The detected regions in the images are replaced
by the values in the corresponding locations in the yearly
profile image. This hierarchical procedure (along the temporal
domain) has the advantage of being simple and efficient, while
only affecting Band-1 and therefore landscape change regions
remain unaltered. The use of multi-resolution average profile
during the hierarchical restoration process ensures that the
irreverent noisy information (e.g., clouds and topographical
shadows) is filtered out and the filled in values are reliable
for change detection. After the data recovery process (see
Figure 5 for examples), we now have complete image frames
for the time-lapse sequence (approximately one frame for
every two months), which are used for the forest change
detection described in the next section.

V. CHANGE DETECTION

We formulate the change detection task as a region classifi-
cation problem where we first identify change area proposals
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and then apply a deep CNN to detect the change or no-
change. More specifically, we consider the healthy forest cover
under normal conditions as a no-change region. A forest region
which undergoes a change event is labeled as a change region.
If a change event is detected, we predict the type of change.
With the proposed approach we are able to detect multiple
change events (of same or different type) happening at a
particular location.

A. Multiscale Region Proposal Generation

To detect forest changes, our approach initiates with the
generation of a set of candidate change regions. We use a
selected set of spectral bands (more details in Sec. VI-B)
which provide an appropriate visualization for fire and harvest
changes. Since these changes have different appearance, tex-
ture and shape characteristics, we can apply standard computer
vision methods (usually tailored for RGB images) to this
problem.

The region candidates are generated using the MRP de-
scribed in Sec. IV-C. Since the changes of interest mostly span
a time frame comparable to one year, we generate the initial
set of potential change region candidates using each of the
yearly profiles in the MRP. The bounding boxes enclosing the
regions of interest are generated using the edge based object
proposal method (EdgeBox) [63]. Note that the notion of edge
and contours is similar in both the reflectance data and the
color images. We use the structured edge detector model pre-
trained on the Berkeley Segmentation Data Set 500 (BSDS-
500 dataset) for edge detection [64]. Since the model is pre-
trained on regular color images, we obtain RGB images from
the reflectance data by selecting the relevant channels which
provide a natural-looking visualization of vegetation and fires
(see Sec.VI-B for details).

From the expert annotated change regions, we observe
that there exists a large disparity among the relative sizes
of bounding boxes for different change events. For example,
the fire regions are usually large (up to ∼80% of the total
area enclosed by the entire image) and the harvest regions are
usually tiny (up to < 0.005% of the image area). To tackle this
problem, we propose a scheme that uses the original image as
well as the patches extracted at multiple scales to generate
bounding-box proposals.

Our approach to use multiscale patches is illustrated in
Figure 8. We use four scales during the proposal generation
process, each with different sized patches. More precisely, the
sizes relative to the original image dimensions are : 1 × 1,
1
4 ×

1
4 , 1

8 ×
1
8 and 1

16 ×
1
16 . To avoid missing any change

regions which appear close to the patch boundaries, we extract
overlapping patches with a step size equal to 80% of the
shortest patch dimension. For every patch, we allow a fixed
maximum number of boxes (Mbox) with scores higher than
Sbox to be detected. By varying Mbox and Sbox, we can
obtain varying number of boxes. We note that generating a
large number of proposals gives a better overlap ratio with the
manually identified change regions by the experts. However, it
also results in redundant proposals and a high computational
load during the subsequent processing steps.

Next, we describe our approach to refine the initial candidate
set by removing the redundant and unwanted box proposals.

B. Candidate Suppression

The initial set of box candidates is further refined to reduce
the computational load without affecting the detection accu-
racy. First, we generate a change map by comparing the yearly
profile to the overall background profile in the MRP. Since
a change map consists of pixel-wise intensity differences, it
captures any visible changes happened on the image plane. The
change map is refined by morphological operations (erosion
followed by dilation). Afterwards, we retain the candidate
boxes whose at least 20% area was changed. We also ignore
the box proposals that enclose a very high percentage (> 90%)
of the total changed area. This results in the suppression of
several small and unnecessary box proposals which do not
fully cover a particular change event. Finally, we perform
a non-maximal suppression of bounding boxes to remove
redundant proposals. This suppression step ignores the lower
scored bounding box for each pair of overlapping boxes
(overlap ratio defined by IOU). The recall rates of a varying
number of proposals generated in this manner (for different
values of Mbox and Sbox) are shown in Figure 10. We note
that the generated proposals provide a reasonable coverage
(> 94%) for 2000 − 4000 box proposals in an area of ∼
104 km2.
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Fig. 9: The CNN architecture used for forest change detection. The network takes a series of patches (P (i − t) . . . P (i + t))
centered at a given time instance for each change area proposal. The feature representations are fused together after the first
FC layer using a max-pooling operation to produce temporally consistent and smooth features.

C. Deep Convolutional Neural Network
We use a deep CNN model to map the raw patch data to

a discriminative feature space which is then used to detect
relevant changes. Given a candidate set of change regions, the
deep neural network predicts whether each patch belongs to
no-change category or a change category (either fire or harvest
change). The network architecture comprises of 17 weight
layers, whose filter sizes and number of filters are shown
in Fig 9. Upto the 14th weight layer (first fully connected
(FC) layer), the network architecture is identical to the state-
of-the-art VGG-16 net (configuration-D) [8]. Afterwards, we
perform feature pooling along the temporal domain to generate
temporally smooth predictions. Notice that, for every time
instance i, the network is fed with 2t before and after frames
whose features (F (i − t) . . . F (i + t)) are pooled with the
current frame (ith) features to generate a refined representation
(F ′(i)). The max-pooling operation is used for feature fusion
and performs better than the average pooling in our experi-
ments. The temporally pooled feature representation F ′(i) is
then used by the subsequent FC layers and finally the output
layer to predict the change class. We set the temporal window
size t = 3 by cross-validation, which gives a moderate boost
over the non-pooled features (see Sec. VI-D).

The input patches fed to the network are of varying sizes,
including some very large as well as very small bounding
boxes. To remove this disparity, we ensure that the smaller
dimension of an image patch is within the range [224, 480]
by proper upsampling or down-sizing. From each input image
patch, we extract 224× 224 windows with step size of 64 to
feed equal-sized inputs to the network. The 4096 dimensional
feature vectors of all these windows (obtained after the first FC
layer) are then max-pooled to obtain a single representation of
each distinct patch. The mean image is also subtracted from
each input patch which enhances the discriminative ability of
features.

The network parameters are comparatively huge (around
139 million) compared to the available patch labels for harvest

and fire changes. Therefore, we initialize the first 14 layers
from the network pretrained on the ImageNet dataset [8] and
perform fine-tuning using the available surface reflectance
data. The last two FC layers are initialized with random
weights and learned from scratch for change detection. We also
note that since the fire events last for a relatively short time,
their representation is comparatively lower in the training set
which results in a lower test performance. To avoid this class
imbalance problem, we upsample the less frequent change
event data to make sure that both types of change events
have nearly an equal representation in the training set. The
upsampling is achieved by adding identical, flipped, rotated
and cropped copies of the less frequent class samples.

During the test phase, we input multiple patches to the
network (similar to the training phase) and perform temporal
feature pooling after the first FC layer. The predictions made
by the network are temporally smooth and directly compared
with the ground-truths for evaluation (see example predictions
in Figure 13). More experimental and evaluation details are
described in the next section.

VI. EXPERIMENTAL ANALYSIS

A. Evaluation Tasks

We test our algorithm on four standard tasks. The first two
tasks pertain to an ablative analysis to study the localisation
and patch-level classification performance of our approach.
The next two tasks relate to the time-series change detection
and start/end time prediction for change events.

1) Tasks for Ablation Study:
a) Localisation of Change Events: In this task, we assess

the quality of the bounding-box proposals generated by our
approach. Since only a limited number of change locations
have been identified in the available annotations, we quantify
the quality of proposals by finding the proportion of labeled
change boxes that are matched by the generated proposals.
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b) Patch-level Change Classification: For this task, we
treat the change detection problem as a classification task.
Therefore, for a given time-lapse sequence, we treat each
frame as an independent instance and predict whether or not
a change happened in a given frame. For evaluation, we use
the overall accuracy and the recall measure averaged over the
classes.

2) Tasks for Change Detection:
a) Time-series Change Detection: For this task, we make

use of the temporal information while making change predic-
tions. To enforce a temporal consistency in the predictions, we
perform feature fusion in a small window defined over features
computed for the same region at adjacent time instances.
We also, smooth the output predictions from the baseline
approaches to have a uniform detection pattern. The evaluation
metric used for this case is the average intersection over union
(IOU) score obtained over all the labeled change regions.

b) Change On/Offset Prediction: In this task, the onset
and offset of a change event is predicted for a given region.
Information across multiple time instances is used to predict
a smooth change sequence and to avoid multiple noisy spikes
in the prediction. For evaluation, we use the mean taxi-cab
distance for both the onset and offset points of change event
predictions.

B. Experimental Settings
In all our results, we report performances on the complete

dataset including both the original and the recovered regions.
It is important to note that the recovered regions make a sig-
nificant portion of the dataset under investigation and therefore
make the change detection highly challenging. We perform 10
fold cross-validation by keeping the train vs. test split to 90%
vs. 10%. Mutually exclusive sets of change locations are used
for training and testing procedures, and care has been taken
to ensure that an event does not split between the train and
the test set.

We use a combination of bands 5, 4 and 1 from the
Landsat 7 imagery and bands 6, 5, and 2 from the Landsat 8
imagery for training and testing. These band combinations for
Landsat 7 and 8 are suitable for natural-looking visualization
of vegetation and fires (see Figures 5, 14 and 15). The healthy,
dry and sparse vegetation appears in bright green, orange and
brown colors respectively. Grasslands appear in light green
color while water is usually blue. The fire regions appear
in dark red color. Since these band combinations provide a
natural looking visualization of forest cover, we can apply
standard computer vision algorithms and pre-trained models
on the spectral data.

To enhance the contrast of the image, we perform a uniform
rescaling of the red, green and blue channels within the
ranges of 0.0055-0.0463, 0.0132-0.0600 and 0.0029-0.0175,
respectively. This helps in the feature extraction process and
the uniform mapping ensures that multiple frames remain
comparable to each other for multi-temporal analysis.

C. Baseline Approaches
We compare our approach with strong baselines which

use popular handcrafted features and strong machine learning

classifiers. These baselines are described next.
1) Handcrafted Features for Classification: We use dense

Scale Invariant Feature Transform (SIFT) descriptors as a
baseline for change detection. Based on these features, we
experiment with three classifiers: i) linear support vector
machine (SVM) for max-margin classification, ii) kernel SVM
for nonlinear classification, and iii) random forest (RF) for
ensemble learning based classification. For the kernel SVM,
we use the efficient homogeneous kernel mapping [65] to
approximate the χ2 kernel. The SIFT descriptors are computed
on a dense grid and the classifier is directly trained on these
local features. Note that this was feasible because the pixel
labelling of the change regions is known within each patch.
During the testing phase, we classify a given image patch
as a change region if at least 15% of the SIFT descriptors
are classified as the fire or harvest change. This percentage
was set using cross-validation experiments, which provided
approximately equal true-positive and true-negative rates.

2) Bag-of-Visual-Words (BoW) for Classification: For the
BoW baseline, we use dense SIFT as local features and
efficiently compute a dictionary using the k-means clustering.
The number of bins is set to 600 by cross validation. All
the features are then represented in terms of associations with
the dictionary atoms. A conventional BoW model does not
preserve the spatial information. However, this information
can be useful to categorize change patterns with distinctive
shapes. Therefore, to incorporate the spatial information, we
use disjoint spatial bins to compute histograms which are then
stacked together to obtain a final representation. Similar to the
previous baseline, we use linear SVM, χ2-kernel SVM, and
RF classifier for prediction.

D. Results

1) Ablative Analysis: We first evaluate the performance of
our bounding-box proposal generation scheme on the Db-37
region. The varying number of bounding-box proposals affect
the amount of coverage for the labeled change regions. The
trend is illustrated in Figure 10. We consider a successful
match between the ground-truth bounding-box and the gener-
ated proposal if their IOU > 0.1. We generate different number
of bounding-box proposals by changing values of the constants
Mbox and Sbox. The higher number of box proposals provide
more coverage but also require more computational resources
for further processing. To make a balanced choice, we set
Mbox = 30 and Sbox = 0.05 in our experiments to generate
∼1900 box proposals, which cover 94% of the labeled change
regions.

We have also experimented with other box proposal gen-
eration methods and analyzed their performance compared
to EdgeBox. These box proposal methods include selective
search [66], constrained parametric min-cuts (CPMC [67])
and objectness measure [68]. The parameters of these models
were set to generate nearly the same number of boxes as
generated by the EdgeBox. In the cases where the number
of generated boxes was very large (e.g., objectness measure),
we only considered the box proposals with the highest score
for evaluation. For each of these methods, we recorded the
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Fig. 12: Onset and offset detection results for individual fire and harvest events. The bar plot shows differences in months,
the events which were not detected have been excluded. It is important to notice that the change detection is performed on
multi-temporal images with nearly two months gap.

TABLE II: Db-37 Region: Patch-wise classification and detec-
tion results for the temporal sequence are summarized below.
All performance numbers are in percentages (%).

Method Accuracy Avg. Recall Mean IOU

SIFT+l-SVM 68.1 57.3 50.2
SIFT+k-SVM 71.3 61.4 54.8
SIFT+RF 69.7 58.8 50.6

BoW+l-SVM 72.6 63.1 54.8
BoW+k-SVM 74.1 64.9 57.1
BoW + RF 71.7 64.0 54.7

This paper 92.0 84.6 84.7

percentage coverage of the ground-truth change regions when
the number of box proposals is increased in Fig. 10. Further-
more, we have also evaluated the performance of the random
box generation around the change regions. Specifically, for
random box generation, we obtain a thresholded change mask
for each yearly profile image and generate randomly sized
boxes with in the range of ground-truth change box sizes (by
varying the box diagonal). Afterwards, the desired number of
boxes are randomly selected as the candidate set for further
processing. With the same number of boxes as the ones used
for EdgeBox (∼ 1900), the coverage rate turned out to be very
low (17.6%). However, we noticed a consistent increase in the
coverage rate and for a very huge number of boxes (50,000),
we obtained a good coverage rate of 86.7%.

We performed patch level change/no-change prediction by

TABLE III: Db-36 Region: Patch-wise classification and de-
tection results for the temporal sequence are reported below.
All performance numbers are in percentages (%).

Method Accuracy Avg. Recall Mean IOU

SIFT+l-SVM 69.0 57.0 54.2
SIFT+k-SVM 71.8 59.3 57.8
SIFT+RF 71.3 58.6 55.1

BoW+l-SVM 74.2 63.0 61.5
BoW+k-SVM 76.5 65.6 64.9
BoW + RF 73.9 61.5 60.0

This paper 91.3 70.8 85.4

treating the problem as a classification task. In Table II), we
report the overall accuracy, the average recall rate and the
mean IOU (averaged over all classes). We noticed a compara-
tively higher performance when features were fused in a small
window along the temporal dimension to get an improved
feature representation at each time instance. We tested different
sized windows and observed that a medium sized window
(size = 7) performed best. The baseline approaches perform
fairly low (accuracy and recall difference as much as ∼24%
and ∼27%, respectively) compared to our proposed approach.
Among the two baseline techniques, the bag-of-words based
procedure performs better than the low-level SIFT features.
In terms of classifiers, the homogeneous approximation of
χ2-kernel outperforms consistently the linear SVM and RF
alternatives.
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TABLE IV: Our results for onset/offset detection and compar-
isons with several baseline techniques are reported for Db-37
region. The error units are months (Mn) and it is defined as
the mean taxicab distance.

Method Onset Error (Mn) Offset Error (Mn)

SIFT+l-SVM 8.7 ± 4.1 15.1 ± 7.5
SIFT+k-SVM 8.3 ± 4.1 14.9 ± 7.2
SIFT+RF 8.9 ± 4.3 15.9 ± 7.7

BoW+l-SVM 7.4 ± 3.6 13.5 ± 6.9
BoW+k-SVM 7.1 ± 3.4 12.6 ± 6.8
BoW + RF 7.4 ± 3.7 13.8 ± 7.1

This paper 3.2 ± 2.3 5.5 ± 5.5

TABLE V: Onset/offset detection results and comparisons with
several baseline techniques are reported for Db-36 region.

Method Onset Error (Mn) Offset Error (Mn)

SIFT+l-SVM 9.2±3.7 17.4±7.7
SIFT+k-SVM 8.4±3.8 15.5±7.0
SIFT+RF 9.0±3.5 17.5±7.7

BoW+l-SVM 7.8±3.5 14.2±6.0
BoW+k-SVM 6.8±3.1 12.9±5.7
BoW + RF 7.5±3.3 14.4±6.1

This paper 4.1 ± 2.7 6.9 ± 4.8

2) Change Detection Results: For the temporal change
detection task, since it is highly unlikely to have forest
changes taking place abruptly at close-by time instances, we
further smooth the output predictions made by the baseline
procedures. For this purpose we used a uni-dimensional me-
dian filter with a comparatively higher window size of 5
(equivalent to ∼10 months data). We note that the outputs
from our CNN based approach with feature fusion are already
smooth and do not need further processing. Therefore, our
final classification and detection results which are reported in
Tables II and III use feature level fusion but do not use any
output prediction smoothing. Sample results of ground-truth
and predicted sequences for the case of fire and harvest events
are shown in Figure 13. Our approach provides temporally-
smooth labelings and it was able to detect multiple changes
of similar and different types occurring at a particular change
site.

We analyze the accuracy of onset/offset prediction for each
change event in Tables IV and V. We show the differences
between the onset/offset points in the output predictions and
ground-truth annotations for each distinct event in Figure 12.
On average, the start point of each predicted change event
in Db-37 and Db-36 differs from the ground-truth change
sequence by 3.2 ± 2.3 and 4.1 ± 2.7 months respectively.
The average end point difference between the predicted and
ground-truth changes in Db-37 and Db-36 is 5.5 ± 5.5 and
6.9± 4.8 months respectively. For the change onset, we con-
sider a valid detection to be the one which lies within one year
of the ground-truth change event start point. For the case of
change offset, the maximum permissible gap between ground-
truth and predicted end-times is set to two years because the

changes recover slowly and there is no definite change end
time. An event is considered as missed if the predicted onset
and offset time is higher than the permissible limits. With the
above mentioned limits, 19.2% and 22.4% change onsets are
missed while 22.2% and 22.4% change offsets are missed for
Db-37 and Db-36 respectively. It is important to note here that
the change patterns are not very clear in most cases and the
ground-truth annotations (especially for offsets) are based on
a subjective judgement.

To study the effect of permissible limits (error threshold)
on the change on/offset performance and the percentage of
missed events, we experiment with different thresholds. The
trends of missed events and performance can be seen in
Figure 11. We note that as the onset/offset error threshold
(in months) is increased, the percentage of missed events
decreases steadily. However, the mean error in terms of taxicab
distance increases with the increase in error threshold. Another
important observation is that the error for change onset is
comparatively lower than the change offset error. This can be
explained by the fact that although the change events usually
start at one particular point in time, the recovery process is
slow and does not finish at a single time instance.

We also qualitatively analyze our detection results on un-
labeled regions with in the study area. Figure 14 shows our
detection results on the full image plane (example frame taken
from year 2003). In addition to the labeled change sites, our
approach was able to identify new change sites (see bottom two
rows) and also predict their change on/offset points in the time-
series data. Only in the shown example, our method discovered
more than 10 new change sites. We also noticed a few false
detections e.g., one in the middle-right of the top image in
Figure 14. Our approach can drastically reduce the human
effort required for full change annotations by introducing a
human in the loop to eliminate any false detections on the
unlabeled patches. The proposed system can then be trained
on the enhanced training set (including the newly generated
training data) which will further improve the detection ability.

The qualitative results of our approach on selected parts of
the time-series data are shown in Figure15. In particular, we
show three challenging image sequences where our approach
was not fully accurate. The illustrated examples include both
the fire and harvest changes. The first challenge was that the
changes recover slowly, thus a mismatch between the predicted
offset timings was evident in some cases (e.g., the top and
bottom sequences in Figure 15). Secondly, change events of
different types occurring in nearby regions affect the overall
performance. For example, a fire event was predicted before
the harvest change due to a near-by fire event in the middle
sequence in Figure 15. Finally, minor errors in prediction can
occur when very small change regions are involved as the one
shown at the bottom of Figure 15.

VII. CONCLUSION

Existing approaches to detect changes in forest land-cover
work at a larger temporal scale and use hand-crafted features
designed from the landscape attributes. Our proposed approach
is capable of performing change analysis at a much finer tem-
poral resolution and automatically learns strong features from
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Fig. 13: (a-f) Sample results of the ground-truth change patterns and the change sequences predicted by our approach. In each
plot, the top bar shows ground truth, and the bottom bar shows prediction from our approach.

the raw surface reflectance data. To achieve a finer temporal
resolution, we perform data inpainting using the reliable data
values and sparse coding. For change detection, our approach
works on the object-level by identifying a candidate set of
change regions using multi-resolution area profiles. We use
both spatial and temporal contextual information in the deep
CNN model which helps in making better predictions. Our
method can precisely localize the change regions and predict
their on/offset timings accurately within an error margin of 3
to 6 months. In future, the possibility of creating a large-scale
annotated dataset will be investigated. This will enable the
training of large-scale data driven models from scratch. Since
interesting changes are scarce in practical settings, we will
also investigate class-imbalanced learning of deep networks
for change detection [69].
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Fig. 14: This figure shows detection results on the complete image plane encompassing the forest area under investigation.
We show some examples of change regions (bottom two rows) which were not labeled by the experts, yet our algorithm was
successfully able to detect them.
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Fig. 15: Three small portions of patch sequences are shown in the above figure. The ground-truth and the predicted change/no-
change labels are shown on the top left corner in blue color and red color respectively. The digits 1, 2 and 3 on top-left
represent no change, fire and harvest respectively.
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